手机浏览器扫描二维码访问
此次返校,他拜访了导师萨克斯,还四处转了转。
就在散步中,他突然回忆起——当年自己徘徊于校园小径,苦苦思索的一个数学问题:
没错,就是那个对“并封闭集合猜想”的证明。
读博期间,Gilmer绞尽脑汁,花了一整年时间却毫无进展,只是搞明白了为什么这一看似简单的问题难以解决。
为此,他还去找过导师萨克斯。但导师也曾在该问题上停滞不前,因而他既不看好Gilmer的研究,也不愿重新碰这一领域。据Gilmer回忆,当时导师差点把他赶出房间。
但现在,重回校园转一圈的Gilmer有了个新想法:用信息论及相关原理解决并封闭猜想问题。
Gilmer的思路是找反例。
根据并封闭集合猜想,一个正常的并封闭集族中,至少应该有一个元素在多于一半的集合中出现。
既然如此,只要想办法构造一个特殊的集族,里面没有一个元素出现在超过1%的集合中,这个猜想就会被证伪,反之如果构造不出来,那么猜想就可能成立。
现在,我们用信息论视角看这一猜想:
正常来说,如果从集族中任意挑出两个集合,这两个集合取并集后,并集中的元素比原来两个集合更多,其信息熵应该比原来的单独两个集合更低。
然而如果基于“没有一个元素出现在超过1%集合”这个限制条件,任意两个集合取并集后,计算出来的信息熵竟然比原来的单独两个集合更高。
这显然是不可能的,因此不存在这么一个特殊的集族,Glimer的反例也没有找到。
但这也就意味着在“并封闭”集族中,至少存在一个元素,会出现在超过1%的集合中。
2022年11月16日,Gilmer将这一思路写成论文,发表在了arXiv上。
当然,他这篇论文还不是“完全体”,也就是说并没有完全证明并封闭集合猜想——
毕竟这只是至少1%,还不意味着原来的并封闭集合猜想中的至少50%就成立。
但这个新思路已经足够让学界震动。
普林斯顿大学数学家RyanAlweiss评价“引入信息量”这一操作:非常聪明。
仅仅几天后,就有3个不同的数学研究组基于他的研究,先后发表了研究论文,随后也有更多研究者跟进,他们所在院校机构有牛津、普林斯顿、哥大、布里斯托等。
在后续研究中,对“并封闭集合猜想”的概率值证明,被推进到了38%。
令这些数学家好奇的是,基于Gilmer的研究,他自己上手将概率值推进到38%并不难。
对此,Gilmer表示,自己已经五年多没碰数学了,确实不知道如何进行分析工作来将其进一步推进下去。
不过,他也认为,正是因为对相关数学方法的生疏,让他跳出了常理,用圈外办法取得突破。
喜欢数学心请大家收藏:()数学心
剑神韩友平第一部 神奇宝贝:开局十连抽,获得梦幻 一本杂录 大清话事人 沉睡千年醒来,749局找上门 偏偏宠上你 尘封的仙路 包青天断案传奇故事汇 在明末奋斗 柯南!快看,你爸爸过来了! 开局成为峰主,打造万古不朽仙门 开局被渣,反手投资女帝无敌 高冷学神之攻略手册 仙骨 好运撞末日 春过辽河滩 都市重生:我在七日世界刷神宠 跨越阶层的恋爱 邪灵战神 造孽啊,曹贼竟是我自己
一张从始皇帝皇宫流传出的长生不老药地图,解开不死不灭之秘。一代名将,将守,从万人敌,到无人敌的重生之路!九龙吞珠读者交流群721466643)...
男人一辈子最值得骄傲的事里包括服一次役,当一回特种兵,和世界上最强的军人交手。还有,为自己的祖国奉献一次青春,为这片热土上的人民拼一次命。这些,庄严都做到了。(此书致敬每一位曾为国家奉献过青春,流过血洒过汗的共和国军人!读者群号764555748)...
一个集合口袋妖怪,数码宝贝等等游戏,动漫的游戏正式登陆全球,谁才是最强的训练家,谁才是游戏里最强的宠物,且看罗炎称霸漫兽竞技场,一步一步从无名小卒爬上神坛。...
玄幻爽文九天大陆,天穹之上有九条星河,亿万星辰,皆为武命星辰,武道之人,可沟通星辰,觉醒星魂,成武命修士。传说,九天大陆最为厉害的武修,每突破一个境界,便能开辟一扇星门,从而沟通一颗星辰,直至,让九重天上,都有自己的武命星辰,化身通天彻地的太古神王。亿万生灵诸天万界,秦问天笑看苍天,他要做天空,最亮的那颗星辰...
...
关于抢救大明朝朱慈烺此贼比汉奸还奸,比鞑子还凶,比额李自成还能蛊惑人心!闯王李自成立马九宫山,遥望东南,感慨万千。慈烺此子忤逆不孝,奸诈凶残,简直是曹操再世,司马复生,让他当了皇帝,全天下的...