手机浏览器扫描二维码访问
另一个与卡拉比猜想密切相关的问题是代数几何中全纯向量丛的稳定性与其上的Hermitian-Einstein度量的对应问题,这个问题约化成一个与规范场理论相关的极为困难的非线性方程解的存在性问题。
1986年丘成桐与乌伦贝克(Uhlenbeck)合作,在卡勒流形上完全解决了这个问题。
稍后,唐纳森也在投影流形上用不同的方法将这个问题解决。
1988年,辛普森(Simpson)将这些结果推广并与霍奇变分理论相结合,发展成为代数几何中一个极为有效的工具。
凯勒流形的内在对称性
我们花了点时间来讨论度规,是为了要对凯勒度规和具备这种度规的凯勒流形能够稍微有点概念。一个度规是否为凯勒,和在空间上移动时,度规如何变化有关。
凯勒流形是一组叫作“厄米特流形”(Hermitianmanifold)的复流形的子类。
在厄米特流形上,你可以把复数坐标的原点放在任何一点上,它在该点上的度规看起来像是标准的欧氏几何度规。
但当你离开该点时,它的度规就愈来愈不像欧氏的。
更明确地说,当移动到与原点的距离为ε时,度规系数本身的改变差异大致是ε倍。我们将这样的流形称为“一阶欧氏空间”。
所以如果ε是0.001英寸(1英寸=2.54厘米),当我们离开ε距离时,厄米特度规的系数与原先的差距会维持在约0.001英寸的误差内。至于凯勒流形则是“二阶欧氏空间”,这表示它的度规会更加稳定。当与原点的距离为ε时,凯勒流形的度规系数的改变大致是ε2倍。
沿用前面的例子,当ε=0.001英寸时,度规的变化误差只有0.000001英寸。
为何卡拉比要特别重视凯勒流形呢?要回答这个问题,我们得先考虑可能的选择范围。
比方说,如果真的想要严格限制,你可以坚持流形必须是完全平坦的。
但只要是二维以上的任何维度,唯一完全平坦的紧致流形就只有环面或它的近亲。
就流形而言,环面其实相当简单,因而也相当受限。我们希望能够更多样,看到更多可能性。至于厄米特流形,则又嫌限制太少,它的可能性太多太多了。于是介于厄米特和平坦之间的凯勒流形,正具有几何学家经常寻找的那种特质:它们具有足够多的结构,因此不会难以操作,但是结构又不会多到限制过多,以至于根本找不到符合你的明确条件的流形。
喜欢数学心请大家收藏:()数学心
大清话事人 跨越阶层的恋爱 偏偏宠上你 高冷学神之攻略手册 柯南!快看,你爸爸过来了! 造孽啊,曹贼竟是我自己 都市重生:我在七日世界刷神宠 剑神韩友平第一部 一本杂录 仙骨 沉睡千年醒来,749局找上门 邪灵战神 开局成为峰主,打造万古不朽仙门 包青天断案传奇故事汇 尘封的仙路 在明末奋斗 好运撞末日 开局被渣,反手投资女帝无敌 神奇宝贝:开局十连抽,获得梦幻 春过辽河滩
一朝重生,亲爹从军阵亡,亲娘病死,留下体弱的弟弟和青砖瓦房几间。无奈家有极品亲戚,占了我家房还想害我姐弟性命!幸得好心夫妻垂帘,才有这安稳日子过。偶然山中救得老道一位,得其倾囊相授修得一身好武艺。骤闻亲爹消息,变身潇洒少年郎,入了天下闻名的孟家军,立军功当将军,可是那个总阴魂不散的小王爷是要搞哪样?虾米?威胁我?...
男人一辈子最值得骄傲的事里包括服一次役,当一回特种兵,和世界上最强的军人交手。还有,为自己的祖国奉献一次青春,为这片热土上的人民拼一次命。这些,庄严都做到了。(此书致敬每一位曾为国家奉献过青春,流过血洒过汗的共和国军人!读者群号764555748)...
甜宠无虐+日更+萌宝+智脑一个大佬和重生来的小媳妇甜蜜日常!一个娱乐小透明凭借智脑逆袭成超级影后的故事~...
一个浑浑噩噩的少年,在阳台吹风不小心掉了下去,死过一次的他,决定开始改变,故事从这里开始,他就是林浩...
一个转世失败的神农弟子,想过咸鱼般的田园生活?没机会了!不靠谱的神农,会让你体验到忙碌而充实的感觉。师父别闹,就算我病死饿死从悬崖跳下去,也不种田,更不吃你赏赐的美食真香啊!本人著有完本精品农家仙田,欢迎阅读。QQ群42993787...
嫁给我,我可以替你报仇。陆白,亚洲第一跨国集团帝晟集团总裁,商业界最可怕的男人。传闻他身后有着最庞大的金融帝国,身边从未有过什么女人,传说他是夏儿想,管他呢,安心地做她的总裁夫人虐虐渣最好不过了。只是婚后生活渐渐地不一样了,看着报纸上帝晟总裁的采访,安夏儿方了你你你什么意思,不是说好我们隐婚的么老...