手机浏览器扫描二维码访问
高木贞治说:“不完全对,即使世界上任何一个东西都是由一个简单的元交换出来的,但是这个交换过程极其繁琐,是一大堆的逻辑符号,就算用范畴论的语言都需要写好几页呢。”
小平邦彦无语:“那还不如非交换呢,把非交换弄简单点,不也可以操作嘛!”
阿贝尔感觉到,关于数论中同余的问题,往往就会关联有限群。
这是不可避免的。
只要以规范,就会让其得到大面积惊人的使用。
比如二律互反等一类的数论问题,在有限域这种地方也能用得着。
那么近下来,让大家接受有限数域,就是最终于的问题了。
对于此,阿贝尔扩张就是关于这个问题的研究的,同时后人有循环扩张、分圆扩张及库默尔扩张。
对于分圆扩张,克罗内克发展了克罗内克的青春梦。
而高木贞治,解决了克罗内克青春梦猜想。
类域论就是研究怎样用k的元素来描述k的所有阿贝尔扩张的问题。
1920年日本数学家高木贞治完成了类域论的最早突破:对于每个扩张K,都对应k中的一个对象T(K),即k的理想类群在某一等价关系之下的一个等价类。
高木描述了这些T(K)的集合,而且每一个T(K)都刻划k的唯一的阿贝尔扩张K,并且K的代数及算术性质可由T(K)直接推出。
对这个漂亮的定理,高木给出的证明非常繁复,中间还要用到解析的方法,但其中起主要作用的是定义狄利克雷L级数。
之前几百年,高斯发现了二次互反律的多种证明。
1920年,高木贞治发展了关于数域的阿贝尔扩张理论,和类域论。
后来阿廷发现了阿廷互反律。
从中发现了在数论、群论和代数几何之间的相互联系。
同余代数,对于椭圆曲线与模形式。
而模形式对应艾森斯坦级数。
所以二律互反对于级数,一般级数使用狄利克雷的L级数来表示的。
阿廷就发现了这个东西,后来推广到阿廷互反律。
喜欢数学心请大家收藏:()数学心
偏偏宠上你 包青天断案传奇故事汇 好运撞末日 在明末奋斗 柯南!快看,你爸爸过来了! 剑神韩友平第一部 开局被渣,反手投资女帝无敌 春过辽河滩 大清话事人 尘封的仙路 沉睡千年醒来,749局找上门 神奇宝贝:开局十连抽,获得梦幻 邪灵战神 高冷学神之攻略手册 造孽啊,曹贼竟是我自己 一本杂录 仙骨 开局成为峰主,打造万古不朽仙门 都市重生:我在七日世界刷神宠 跨越阶层的恋爱
余庆阳一个搬砖二十年的老工程,梦回世纪之交,海河大学毕业,接老爸的班继续搬砖。用两辈子的行动告诉老师,搬砖不是因为我学习不好!是我命中注定要搬砖已有两本百万字完本书超级村主任最强退伍兵,可以放心入坑!大国工程书友群,群聊号码492691021新书重生之大国工匠...
听说她在占卜,他捧着手眼巴巴的就过来了爱卿,你给本君算算,今晚是本君睡了国师呢?还是国师睡了本君?她哆嗦了一下,一脚就踹了过去谁都不睡!她今晚就阉了你!!重生前,她是惊才绝艳的大占卜师,重生后,她还是上知天文下知地理的一品国师,可是,她算了两世,却没算到自己这一世会犯桃花国师大人,不好了,帝君来了!卧槽!她一下子就从八卦盘里站了起来他来干什么?他不干什么!那就好那就好!她狂抹一把额头上的冷汗。小太监欲哭无泪可他说了,今晚他夜观星象,是个鸾凤和鸣...
一个浑浑噩噩的少年,在阳台吹风不小心掉了下去,死过一次的他,决定开始改变,故事从这里开始,他就是林浩...
...
万众瞩目之下,楚浩扔出一柄剑这轩辕剑你拿好,以后别在我面前装逼。这天,这地,这沧海,这宇宙,谁都无法阻止我。ps看完了?新书搜索从诡秘复苏开始不当人推荐票刷起来,让我们再次征战。...
...